Abstract

Salinity, a determining factor in aquatic environments, influences fish growth. Here, we evaluated the effect of salinity on osmoregulation and growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, a species of high commercial value in Asian markets; we also identified the salinity that maximized this species' growth rate. Fish were reared at 26 °C and under a 14:10 h photoperiod with a salinity of 5 psu, 11 psu, 22 psu, or 34 psu for 8 weeks. Change in salinity had minimal impact on the plasma Na+ and glucose concentrations, although the Na+/K+-ATPase (nkaα and nkaβ) transcript levels in the gills were significantly lower among fish reared at 11 psu salinity. Concomitantly, oxygen consumption was low in fish reared at 11 psu salinity. The feed conversion ratio (FCR) was lower in fish reared at 5 psu and 11 psu salinities than at 22 psu and 34 psu salinities. However, the specific growth rate (SGR) was higher in fish reared at 11 psu salinity. These results suggest that rearing fish at 11 psu salinity would decrease energy consumption for respiration and improve food-conversion efficiency. Among fish reared at 11 psu salinity, the transcript levels of growth hormone (gh) in the pituitary, as well as its receptor (ghr) and insulin-like growth factor I (igf-1) in the liver, were upregulated; these findings suggested stimulation of the growth axis at low salinity. In contrast, there were minimal differences in the transcript levels of neuropeptide Y (npy) and pro-opiomelanocortin (pomc) in the brains of fish reared at any salinity, suggesting that salinity does not affect appetite. Therefore, growth performance is higher in fish reared at 11 psu salinity because of activation of the GH-IGF system, but not appetite, in Malabar grouper juveniles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call