Abstract

Visual rhodopsin is an important archetype for G-protein-coupled receptors, which are membrane proteins implicated in cellular signal transduction. Herein, we show experimentally that approximately 80 water molecules flood rhodopsin upon light absorption to form a solvent-swollen active state. An influx of mobile water is necessary for activating the photoreceptor, and this finding is supported by molecular dynamics (MD) simulations. Combined force-based measurements involving osmotic and hydrostatic pressure indicate the expansion occurs by changes in cavity volumes, together with greater hydration in the active metarhodopsin-II state. Moreover, we discovered that binding and release of the C-terminal helix of transducin is coupled to hydration changes as may occur in visual signal amplification. Hydration-dehydration explains signaling by a dynamic allosteric mechanism, in which the soft membrane matter (lipids and water) has a pivotal role in the catalytic G-protein cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.