Abstract

Glial cell line-derived neurotrophic factor (GDNF) has been shown to be neuroprotective in animal models of the dopamine deficiency in Parkinson's disease. To examine the role of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in this process, we infused a single dose of GDNF into the striatum of mice and analyzed the effect on ERK1/2 by immunohistochemistry and Western blot analysis. GDNF caused an increase in the phosphorylation of ERK1/2 both in the striatum and in tyrosine hydroxylase-positive neurons in the substantia nigra. In the striatum, the increase in ERK1/2 phosphorylation was evident by 3 hr and persisted for at least 7 days, whereas, in the substantia nigra, an increase in phosphorylated ERK1/2 was first evident at 24 hr and persisted for at least 7 days. The increase in phosphorylated ERK1/2 was maximal at 0.45 microg GDNF at the time points examined. GDNF also protected dopamine terminals against the loss of tyrosine hydroxylase immunoreactivity normally associated with the intrastriatal administration of 6-hydroxydopamine (0.5 microg/0.5 microl). However, this was observed only at a much higher dose of GDNF, 4.5 microg. Thus, our results suggest that the ability of GDNF to protect dopamine neurons cannot be explained solely in terms of its influence on ERK1/2 and that the role of other signaling pathways should be explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.