Abstract

BackgroundThe objectives of this study was to explore the activation of the extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway and osteogenesis-related factors in the subchondral bone of patients with knee osteoarthritis (OA).MethodsTen patients with primary OA who underwent total knee arthroplasty in the Department of Arthritis Surgery of our hospital were enrolled, and subchondral bone tissue samples were obtained during the operation. He staining and saffron staining were used to observe the arrangement of chondrocytes in the patient tissues. The protein expression levels of JNK, p-JNK, ERK, p-ERK, Runx2 and OMD in subchondral bone were detected by Western Blot. Knee osteoarthritis mice were established. He staining was used to observe the arrangement of subchondral bone cells in the knee joint of mice. Cellular mineralized nodules were determined by alizarin red staining.ResultsFirstly, in general and staining, it was observed that the subchondral bone lesions of knee OA participants were obvious. Compared with normal knee joints, the levels of phosphorylation-c-Jun N-terminal kinase (P-JNK) and phosphorylation-extracellular-signal-regulated kinase (P-ERK) in the subchondral bone of knee arthritis participants were significantly increased (P<0.05). The level of osteomodulin (OMD) was significantly reduced (P<0.05). Secondly, compared with normal mice, the levels of JNK, P-JNK, OMD, ERK, and P-ERK in the model group were significantly different (P<0.05). At 2–8 weeks, the JNK and P-JNK levels in the mice model group increased significantly over time (P<0.05), and the OMD level decreased significantly over time (P<0.05). The levels of ERK and P-ERK fluctuated over time. Thirdly, osteoblasts were treated with different concentrations of anisomycin, and stained with alizarin red after continuous culture for 24 and 48 h, respectively. It was found that all the cells were stained with orange-red mineralized nodules. As the concentration of anisomycin was increased, the number of cell mineralization nodules was significantly larger, and the positive rate of chemical nodules increased. Different concentrations of anisomycin were given to interfere with the osteoblasts of mice. When anisomycin was administered at a dose of 25 ng, the OMD level reached the highest level. When the concentration of anisomycin was increased, the osteocalcin (OCN) level also showed an upward trend.ConclusionsThe process by which the JNK signaling pathway regulates OMD may be closely related to the pathological changes of subchondral bone in patients with knee OA, and is involved in the occurrence and development of knee arthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call