Abstract
To reduce ribonucleotides to deoxyribonucleotides, the manganese-bound form of class Ib ribonucleotide reductase (RNR) must be activated via a pathway that involves redox protein(s). The reduced flavoprotein NrdI is an important protein in this pathway, as it reduces dioxygen to superoxide. Superoxide then reacts with the RNR Mn(II)2 site to generate a tyrosyl radical that is required for catalysis. A native NrdI reductase has not yet been identified. We herein demonstrate through kinetic and spectroscopic studies that an endogenous flavodoxin reductase can function as the NrdI reductase in Bacillus cereus. When the flavodoxin reductase reduces NrdI, tyrosyl radical formation in RNR is promoted under aerobic conditions, significantly increasing the radical yield. Thus, a missing piece of the class Ib RNR NrdI redox pathway has finally been identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.