Abstract

The cholinergic anti-inflammatory pathway has not yet been studied in splanchnic artery occlusion (SAO) shock. We investigated whether electrical stimulation (STIM) of efferent vagus nerves suppresses the inflammatory cascade in SAO shock. Animals were subjected to clamping of the splanchnic arteries for 45 min, followed by reperfusion. This surgical procedure resulted in an irreversible state of shock (SAO shock). Sham-operated animals were used as controls. Two minutes before the start of reperfusion, rats were subjected to bilateral cervical vagotomy (VGX) or sham surgical procedures. Application of constant voltage pulses to the caudal vagus ends (STIM: 5 V, 2 ms, 6 Hz for 15 min, 5 min after the beginning of reperfusion) increased survival rate (VGX + SAO + Sham STIM = 0% at 4 h of reperfusion; VGX + SAO + STIM = 90% at 4 h of reperfusion), reverted the marked hypotension, inhibited IkappaBalpha liver loss, blunted the augmented nuclear factor-kappaB activity, decreased hepatic tumor necrosis factor (TNF)-alpha mRNA (VGX + SAO + Sham STIM = 1.0 +/- 1.9 TNF-alpha/glyceraldehyde-3-phosphate dehydrogenase ratio; VGX + SAO + STIM = 0.3 +/- 0.2 TNF-alpha/glyceraldehyde-3-phosphate dehydrogenase ratio), reduced plasma TNF-alpha (VGX + SAO + Sham STIM = 118 +/- 19 pg/mL; VGX + SAO + STIM = 39 +/- 8 pg/mL), ameliorated leukopenia, and decreased leukocyte accumulation, as revealed by means of myeloperoxidase activity in the ileum (VGX + SAO + Sham STIM = 7.9 +/- 1 U/g tissue; VGX + SAO + STIM = 3.1 +/- 0.7 U/g tissue) and in the lung (VGX + SAO + Sham STIM = 8.0 +/- 1.0 U/g tissue; VGX + SAO + STIM = 3.2 +/- 0.6 U/g tissue). Chlorisondamine, a nicotinic receptor antagonist, abated the effects of vagal stimulation. Our results show a parasympathetic inhibition of nuclear factor-kappaB and TNF-alpha in SAO shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.