Abstract

Respiratory syncytial virus (RSV) is a major pathogen that can cause acute respiratory infectious diseases of the upper and lower respiratory tract, especially in children, elderly individuals, and immunocompromised people. Generally, following viral infection, respiratory epithelial cells secrete cytokines and chemokines to recruit immune cells and initiate innate and/or adaptive immune responses. However, whether chemokines affect viral replication in nonimmune cells is rarely clear. In this study, we detected that chemokine CCL5 was highly expressed, while expression of its receptor, CCR1, was downregulated in respiratory epithelial cells after RSV infection. When we overexpressed CCR1 on respiratory epithelial cells in vivo or in vitro, viral load was significantly suppressed, which can be restored by the neutralizing antibody for CCR1. Interestingly, the antiviral effect of CCR1 was not related to type I interferon (IFN-I), apoptosis induction, or viral adhesion or entry inhibition. In contrast, it was related to the preferential recruitment and activation of the adaptor Gαi, which promoted inositol 1,4,5-triphosphate receptor type 3 (ITPR3) expression, leading to inhibited STAT3 phosphorylation; explicitly, phosphorylated STAT3 (p-STAT3) was verified to be among the important factors regulating the activity of HSP90, which has been previously reported to be a chaperone of RSV RNA polymerase. In summary, we are the first to reveal that CCR1 on the surface of nonimmune cells regulates RSV replication through a previously unknown mechanism that does not involve IFN-I induction. IMPORTANCE Our results revealed a novel mechanism by which RSV escapes innate immunity. That is, although it induces high CCL5 expression, RSV might attenuate the binding of CCL5 by downregulating the expression of CCR1 in respiratory epithelial cells to weaken the inhibitory effect of CCR1 on HSP90 activity and thereby facilitate RSV replication in nonimmune cells. This study provides a new target for the development of co-antiviral inhibitors against other components of the host and co-molecular chaperone/HSP90 and provides a scientific basis for the search for effective broad-spectrum antiviral drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.