Abstract

Activation of the carotid body (CB) using intracarotid potassium cyanide (KCN) injection increases coronary blood flow (CoBF). This increase in CoBF is considered to be mediated by co-activation of both the sympathetic and parasympathetic nerves to the heart. However, whether cardiac sympathetic nerve activity (cardiac SNA) actually increases during CB activation has not been determined previously. We hypothesized that activation of the CB would increase directly recorded cardiac SNA, which would cause coronary vasodilatation. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA and diaphragmatic electromyography (dEMG), flow probes to record CoBF and cardiac output, and a catheter to record arterial pressure. Intracarotid KCN injection was used to activate the CB. To eliminate the contribution of metabolic demand on coronary flow, the heart was paced at a constant rate during CB chemoreflex stimulation. Intracarotid KCN injection resulted in a significant increase in directly recorded cardiac SNA frequency (from 24 ± 2 to 40 ± 4 bursts/min; P < 0.05) as well as a dose-dependent increase in mean arterial pressure (79 ± 15 to 88 ± 14 mmHg; P < 0.01) and CoBF (75 ± 37 vs. 86 ± 42 mL/min; P < 0.05). The increase in CoBF and coronary vascular conductance to intracarotid KCN injection was abolished after propranolol infusion, suggesting that the increased cardiac SNA mediates coronary vasodilatation. The pressor response to activation of the CB was abolished by pretreatment with intravenous atropine, but there was no change in the coronary flow response. Our results indicate that CB activation increases directly recorded cardiac SNA, which mediates vasodilatation of the coronary vasculature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call