Abstract

DnaJ proteins are characterized by a 'J' domain which is homologous to a region of the Escherichia coli protein DnaJ. DnaJ has been shown to interact with the chaperone protein DnaK, and a number of eukaryotic DnaJ-like proteins have been found to interact with the 70 kDa heat-shock protein/70 kDa heat-shock cognate protein (Hsp70/Hsc70), the eukaryotic homologues of DnaK. Cysteine-string proteins (Csps) are believed to function in calcium-stimulated exocytosis and in this paper we describe a specific ATP-dependent interaction between a Csp (Csp1) and Hsc70/Hsp70. We also show that Csp1 can stimulate the ATPase activity of both Hsc70 and Hsp70 several-fold. Furthermore, we demonstrate that Csp2, a Csp variant found in adrenal chromaffin cells, can enhance the ATPase activity of Hsc70 to a similar extent as Csp1, whereas Csp(137-198), a truncated protein lacking the 'J' domain of Csp1 is unable to stimulate the ATPase activity of Hsc70. This suggests that the functions of Csp1 and Csp2 must differ in some aspect other than interaction with Hsc70. This study is also important from a general view of DnaJ/Hsc70 interactions, as Csps lack a G/F-rich region which has been suggested to be essential for activation of the ATPase activity of DnaK by DnaJ. Thus, this work would imply that a G/F-rich region is not an essential feature of DnaJ proteins for stimulation of the ATPase activity of Hsp70 proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call