Abstract

The NADPH-dependent metabolism of ifosphamide catalyzed by rat liver microsomes was investigated in order to identify individual P450 enzymes that activate this anti-cancer drug and to ascertain their relationship to the P450 enzymes that activate the isomeric drug cyclophosphamide. Pretreatment of rats with phenobarbital or clofibrate increased by up to 8-fold the activation of both ifosphamide and cyclophosphamide catalyzed by isolated liver microsomes. Studies using P450 form-selective inhibitory antibodies demonstrated that constitutively expressed P450s belonging to subfamily 2C (forms 2C11/2C6) make significant contributions to the activation of both oxazaphosphorines in uninduced male rat liver microsomes, while the phenobarbital-inducible P450 2B1 was shown to be a major catalyst of these activations in phenobarbital-induced microsomes. Pretreatment of rats with dexamethasone increased liver microsomal activation of ifosphamide ~6-fold without a corresponding effect on cyclophosphamide activation rates. Ifosphamide activation catalyzed by dexamethasone-induced liver microsomes was minimally inhibited by anti-P450 2B or anti-P450 2C antibodies, but was selectively inhibited by anti-P450 3A antibodies. Selective inhibition of liver microsomal ifosphamide activation was also effected by the macrolide antibiotic triacetyloleandomycin, an inhibitor of several dexamethasone-inducible 3A P450s. These studies establish that a dexamethasone-inducible family 3A P450 can make an important contribution to rat liver microsomal ifosphamide activation, and suggest that dexamethasone pretreatment might provide a useful approach for modulation of ifosphamide metabolism in order to improve its therapeutic efficacy in cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call