Abstract

Protein kinases of the Akt and related serum- and glucocorticoid-regulated kinase (SGK) families are major downstream mediators of phosphatidylinositol (PI) 3-kinase signaling to many cellular processes including metabolic flux, membrane trafficking, and apoptosis. Activation of these kinases is thought to occur at the plasma membrane through their serine and threonine phosphorylation by the phosphoinositide-dependent kinase 1 (PDK1) protein kinase, which interacts with membrane 3'-polyphosphoinositides through its pleckstrin homology (PH) domain. Here, we demonstrate that the SGK family member cytokine-independent survival kinase (CISK) binds strongly and selectively to the monophosphoinositide PI(3)P through its phox homology (PX) domain. Comparing native green fluorescent protein-CISK (EGFP-CISK) to a mutant EGFP-CISK (Y51A) that displays attenuated binding to PI(3)P reveals that this interaction is both necessary and sufficient for its localization to early endosome antigen (EEA1)-positive endosomes. Furthermore, early endosome association of expressed epitope-tagged CISK in COS cells directed by binding of its PX domain to PI(3)P is required for activation of the CISK protein kinase by both insulin-like growth factor-1 and epidermal growth factor. Taken together, these results reveal a critical role of endosomal PI(3)P in the signal transmission mechanism whereby this survival kinase is activated in response to PI3-kinase stimulation by growth factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.