Abstract

To investigate the effect of intrathecal administration of CCPA, an adenosine A1 receptor agonist, on voiding function in rats with cystitis induced by cyclophosphamide (CYP). Thirty 8-week-old Sprague Dawley rats were randomly divided into a control group (n = 15) and a cystitis group (n = 15). Cystitis was induced by a single intraperitoneal injection of CYP (200mg/kg, dissolved in physiological saline) in rats. Control rats were injected intraperitoneally with physiological saline. The PE10 catheter reached the level of L6-S1 spinal cord through L3-4 intervertebral space for intrathecal injection. Forty-eight hours after intraperitoneal injection, urodynamic tests were conducted to observe the effect of intrathecal administration of 10% dimethylsulfoxide (vehicle) and 1nmol CCPA on micturition parameters, including basal pressure (BP), threshold pressure (TP), maximal voiding pressure (MVP), intercontraction interval (ICI), voided volume (VV), residual volume (RV), bladder capacity (BC), and voiding efficiency (VE). Histological changes of the bladder of cystitis rats were studied through hematoxylin-eosin staining (HE staining). Moreover, Western blot and immunofluorescence were used to study the expression of adenosine A1 receptor in the L6-S1 dorsal spinal cord in both groups of rats. HE staining revealed submucosal hemorrhage, edema, and inflammatory cell infiltration in the bladder wall of cystitis rats. The urodynamic test showed significant increase in BP, TP, MVP and RV in cystitis rats, while ICI, VV, BC and VE decreased significantly, indicating bladder overactivity. CCPA inhibited the micturition reflex in both control and cystitis rats, and significantly increased TP, ICI, VV, BC, and VE, but had no significant effect on BP, MVP and RV. Western blot and immunofluorescence showed that there was no significant difference in the expression of adenosine A1 receptor in the L6-S1 dorsal spinal cord between the control and cystitis rats. The findings of this study suggest that intrathecal administration of the adenosine A1 receptor agonist CCPA alleviates CYP-induced bladder overactivity. Furthermore, our results indicate that the adenosine A1 receptor in the lumbosacral spinal cord may be a promising target for treatment of bladder overactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call