Abstract

BackgroundVisual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. Evidence for corresponding functions of the SC in humans is still rare. We examined activity changes in the human tectum and the lateral geniculate nuclei (LGN) in a visual search task using functional magnetic resonance imaging (fMRI) and anatomically defined regions of interest (ROI). Healthy subjects conducted a free visual search task and two voluntary eye movement tasks with and without irrelevant visual distracters. Blood oxygen level dependent (BOLD) signals in the SC were compared to activity in the inferior colliculi (IC) and LGN.ResultsNeural activity increased during free exploration only in the SC in comparison to both control tasks. Saccade frequency did not exert a significant effect on BOLD signal changes. No corresponding differences between experimental tasks were found in the IC or the LGN. However, while the IC revealed no signal increase from the baseline, BOLD signal changes at the LGN were consistently positive in all experimental conditions.ConclusionOur data demonstrate the involvement of the SC in a visual search task. In contrast to the results of previous studies, signal changes could not be seen to be driven by either visual stimulation or oculomotor control on their own. Further, we can exclude the influence of any nearby neural structures (e.g. pulvinar, tegmentum) or of typical artefacts at the brainstem on the observed signal changes at the SC. Corresponding to findings in non-human primates, our data support a dependency of SC activity on functions beyond oculomotor control and visual processing.

Highlights

  • Visual, oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past

  • While the inferior colliculi (IC) revealed no signal increase from the baseline, Blood oxygen level dependent (BOLD) signal changes at the lateral geniculate nuclei (LGN) were consistently positive in all experimental conditions

  • We controlled for this variable by including the individual saccade frequency for each subject in each condition as a covariate in a multivariate analysis of variance (MANOVA) of signal changes in the superior and inferior colliculi and LGN

Read more

Summary

Introduction

Oculomotor, and – recently – cognitive functions of the superior colliculi (SC) have been documented in detail in non-human primates in the past. The small volume of the SC and motion-related artefacts caused by the blood-flow in nearby large vessels [13,14] hamper functional measurements of the tectum due to increased physiological noise in comparison to cortical areas and other subcortical structures like basal ganglia and thalamus. While such noise could hinder the detection of true signals, it could cause (task-related) artefacts that might be misinterpreted as collicular activation. Some studies employed sophisticated methods like cardiac-triggered data acquisition [7] or incorporating regressors for cardiac-cycle related noise in statistical models [9]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.