Abstract

The effects of noradrenaline (NA) and its analogs on subfornical organ (SFO) neurons in rat slice preparations were investigated by using whole cell patch-clamp recording. In the current-clamp mode, the application of NA at 10-100 microM produced membrane depolarization (63%, 17 responsive neurons/27 neurons tested) and hyperpolarization (22%, 6/27 neurons). In the voltage-clamp mode, NA application at 1-100 microM produced inward currents (69%, 42/61 neurons) and outward currents (23%, 14/61 neurons). These currents remained in the presence of TTX or both glutamate and GABA receptor antagonists. In most of the neurons (25/31 neurons) showing inward currents in the presence of NA, the membrane conductance was not changed by voltage ramps or hyperpolarizing pulse stimulation. Similar responses were obtained by the application of the alpha1-agonist phenylephrine. The phenylephrine-induced inward currents were inhibited by the alpha1-antagonist prazosin. The alpha2-agonist clonidine decreased the frequency of spontaneous GABAergic inhibitory postsynaptic currents (4/10 neurons). In addition, RT-PCR assay and immunohistochemical staining showed the existence of alpha1-adrenoceptors in the SFO. The results suggest that SFO neurons in rats are activated postsynaptically through alpha1-adrenoceptors and that the activation is enhanced by suppressing GABAergic inhibitory synaptic inputs through presynaptic alpha2-adrenoceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.