Abstract

Cervical cancer remains the second leading cause of gynecologic cancer-related mortality among women worldwide. STING (stimulator of interferon genes) was reported to be involved in the immune surveillance of tumors. However, the specific role of STING in cervical cancer remains unclear. In this study, we found that the cGAS (Cyclic GMP-AMP synthase)/STING signal decreased in cervical cancer cells. Knockdown of STING by siRNA enhanced the cell viability and migration of cervical cancer cells, while activation of STING by ADU-S100 inhibited the cell viability of cervical cancer cells, with no effect on the migration and apoptosis. In addition, ADU-S100 promoted the secretion of IFNβ and IL-6, and the activation of TBK1 (TANK-binding kinase 1)/NF-κB (nuclear factor kappa-B) pathway. Meanwhile, knockdown of STING inhibited the production of IFNβ and IL-6 that were triggered by dsDNA and suppressed the TBK1/NF-κB signaling. ADU-S100 also suppressed tumor growth in vivo and increased the tumor-infiltrating CD8+ T cell and CD103+ dendritic cell numbers. The NF-κB signal inhibitor limited the increasing numbers of CD8+ T cell and CD103+ dendritic cells induced by ADU-S100, without influence on tumor growth. Hence, our study suggested that STING could serve as a potential novel immunotherapeutic target for cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.