Abstract

The increased emphasis on renewable energy has resulted in a surge of R&D efforts into hydrogen and battery research. The intensive electrochemical environment surrounding the anodic oxygen evolution reaction (OER) has plagued both the activity and stability of the catalytic layer, substrate and porous transport layer, ultimately affecting both these industries. Herein, we report the benefits of potential cycling (PC) a 316L stainless steel felt porous transport layer (PTL) for use in anion exchange membrane water electrolysis. The PC increased surface roughness and created a CrFe5Ni2-OxHy layer through the oxidation of iron as shown by SEM, EDS, XPS, XRD and Raman spectroscopy. Post-PC tests in a three-electrode setup reveal a ≈ 68% decline in polarisation resistance, which is reflected in its performance when employed as an anode in an anion exchange membrane water electrolyser (AEMWE). Overall, potential cycling the PTL under anodic conditions resulted in an improved performance when tested in a AEMWE. Implementing this treatment on stainless steel anodes could be considered to achieve an improved AEMWE performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.