Abstract

Several lines of evidence suggest that neuropeptide FF (NPFF) is involved in nociception and in the modulation of opioid-mediated analgesia. Following the identification of the precursor protein for NPFF, two NPFF receptors and a second PQRF-NH 2 containing peptide, termed NPVF, were identified. To further explore the functional role of PQRF-NH 2 peptides, we have studied their distribution and also the regulation of NPFF and NPVF systems in the spinal cord of rats with peripheral inflammation. The distribution of NPFF gene expression is very similar to that of NPFF immunoreactive peptide but is distinct from NPVF gene expression. In the rat spinal cord, gene expression of NPFF but not that of NPVF was up-regulated by persistent pain induced by carrageenan inflammation. The distribution of NPFF receptor 2 gene expression is very similar to that of the NPFF peptide with a striking localization in the superficial layer of spinal cord. In rats with carrageenan inflammation of the hind paw, expression of both NPFF and NPFF receptor 2 genes was up-regulated in the spinal cord, while expression of NPVF and NPFF receptor 1 genes was not affected. The results of this study demonstrate a coordinated involvement of the spinal NPFF system in the persistent nociceptive pain states. Several studies have found a potentiation and prolongation of morphine analgesia by NPFF, therefore, it is highly possible that the endogenous spinal NPFF system contributes to the enhanced analgesic potency of morphine in animals with peripheral inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call