Abstract

Bacterial secondary metabolites (SM) are rich sources of drug leads, and in particular, numerous metabolites have been isolated from actinomycetes. It was revealed by recent genome sequence projects that actinomycetes harbor much more secondary metabolite-biosynthetic gene clusters (SM-BGCs) than previously expected. Nevertheless, large parts of SM-BGCs in actinomycetes are dormant and cryptic under the standard culture conditions. Therefore, a widely applicable methodology for cryptic SM-BGC activation is required to obtain novel SM. Recently, it was discovered that co-culturing with mycolic-acid-containing bacteria (MACB) widely activated cryptic SM-BGCs in actinomycetes. This "combined-culture" methodology (co-culture methodology using MACB as the partner of actinomycetes) is easily applicable for a broad range of actinomycetes, and indeed, 33 novel SM have been successfully obtained from 12 actinomycetes so far. In this review, the development, application, and mechanistic analysis of the combined-culture method were summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.