Abstract

Gefitinib, erlotinib or afatinib are the current treatment for non-small-cell lung cancer (NSCLC) harboring an activating mutation of the epidermal growth factor receptor (EGFR), but less than 5% of patients achieve a complete response and the median progression-free survival is no longer than 12 months. Early adaptive resistance can occur as soon as two hours after starting treatment by activating signal transducer and activation of transcription 3 (STAT3) signaling. We investigated the activation of STAT3 in a panel of gefitinib-sensitive EGFR mutant cell lines, and gefitinib-resistant PC9 cell lines developed in our laboratory. Afatinib has great activity in gefitinib-sensitive as well as in gefitinib-resistant EGFR mutant NSCLC cell lines. However, afatinib therapy causes phosphorylation of STAT3 tyrosine 705 (pSTAT3Tyr705) and elevation of STAT3 and RANTES mRNA levels. The combination of afatinib with TPCA-1 (a STAT3 inhibitor) ablated pSTAT3Tyr705 and down-regulated STAT3 and RANTES mRNA levels with significant growth inhibitory effect in both gefitinib-sensitive and gefitinib-resistant EGFR mutant NSCLC cell lines. Aldehyde dehydrogenase positive (ALDH+) cells were still observed with the combination at the time that Hairy and Enhancer of Split 1 (HES1) mRNA expression was elevated following therapy. Although the combination of afatinib with STAT3 inhibition cannot eliminate the potential problem of a remnant cancer stem cell population, it represents a substantial advantage and opportunity to further prolong progression free survival and probably could increase the response rate in comparison to the current standard of single therapy.

Highlights

  • The epidermal growth factor receptor (EGFR)directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved therapies for non-small-cell lung cancer (NSCLC) harboring activating mutations in the EGFR kinase [1,2,3]

  • EGFR TKIs induce a significant number of radiographic responses, almost no complete responses www.impactjournals.com/oncotarget are obtained and the median progressionfree survival (PFS) does not exceed more than one year

  • As soon as EGFR mutations were discovered in NSCLC, they were associated with dramatic response to gefitinib [31, 32]

Read more

Summary

Introduction

The epidermal growth factor receptor (EGFR)directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved therapies for non-small-cell lung cancer (NSCLC) harboring activating mutations in the EGFR kinase [1,2,3]. Gefitinib and erlotinib are reversible inhibitors that target the ATP-site of the kinase. Afatinib, a second generation irreversible epidermal growth factor family of receptor tyrosine kinases (ErbB) blocker, targets the ATP-site of the receptor, and covalently binds to cysteine 797 (C797) of EGFR which allows prolonged inhibition of EGFR phosphorylation, even in the presence of a T790M secondary mutation [4]. In mouse models of EGFR (L858R/T790M/C797S) driven lung cancer, a new compound that targets selected drug-resistant EGFR but spares the wild-type receptor is effective in combination with cetuximab, an antibody that blocks EGFR dimerization and keeps the receptor in its inactive form [8]. Afatinib induced downregulation of thymidylate synthase in the gefitinib-resistant NSCLC cells [9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.