Abstract

Glucosylsphingosine (GS) is an endogenous sphingolipid that specifically accumulates in the skin of patients with atopic dermatitis (AD). Notably, it was recently found that GS can induce itch sensation by activating serotonin receptor 2A and TRPV4 ion channels. However, it is still uncertain whether other molecules are involved in GS-induced itch sensation. Therefore, by using the calcium imaging technique, we investigated whether serotonin receptor 2 – specifically 2A and 2B – can interact with TRPV1 and TRPA1, because these are representative ion channels in the transmission of itch. As a result, it was found that GS did not activate TRPV1 or TRPA1 per se. Moreover, cells expressing both serotonin receptor 2 and TRPV1 did not show any changes in calcium responses. However, enhanced calcium responses were observed in cells expressing serotonin receptor 2 and TRPA1, suggesting a possible interaction between these two molecules. Similar synergistic effects were also observed in cells expressing serotonin receptor 2 and TRPA1, but not TRPV1. Furthermore, a phospholipase C inhibitor (U73122) and a store-operated calcium entry blocker (SKF96365) significantly reduced GS-induced responses in cells expressing both serotonin receptor 2 and TRPA1, but not with pre-treatment with a Gβγ-complex blocker (gallein). Therefore, we propose a putative novel pathway for GS-induced itch sensation, such that serotonin receptor 2 could be coupled to TRPA1 but not TRPV1 in sensory neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.