Abstract

The cytotoxic necrotizing factor 1 (CNF1) activates Rho GTPases by deamidation of glutamine-63 and thereby induces redistribution of the actin cytoskeleton and formation of stress fibers. Here, we have studied the effects of CNF1 on the transepithelial resistance of Caco-2 cells, a human intestinal epithelial cell line, in comparison with the Rho-inactivating toxin B of Clostridium difficile. Whereas toxin B decreased the transepithelial resistance of Caco-2 cells by about 80% after 4 h, CNF1 reduced it by about 40%. Significant changes of the transepithelial resistance induced by CNF1 were detected after 3 h of incubation. Half-maximal effects were observed with 10 and 41 ng of CNF1 and toxin B per ml, respectively. Flux measurement revealed no CNF1-induced increase of fluorescein isothiocyanate-dextran permeation within the first 4 h of incubation and a 2.9-fold increase after 24 h of incubation. In contrast, toxin B induced a 28-fold increase of permeation after 24 h. As detected by rhodamine-phalloidin staining, CNF1 increased polymerization of F actin at focal contacts of adjacent cells and induced formation of stress fibers. The data indicate that not only depolymerization but also polymerization of actin and subsequent reorganization of the actin cytoskeleton alter the barrier function of intestinal tight junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.