Abstract

ObjectiveThe aim of present study was to test the hypothesis that activation of receptor for advanced glycation end products (RAGE) pathway contributes to aortic remodeling and endothelial dysfunction in sinoaortic denervated (SAD) rats. Methods and resultsExperiment 1: 8 weeks after sinoaortic denervation, aortas were removed for measurement of AGE/RAGE pathway. Sinoaortic denervation in rats resulted in enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE in aortas. Experiment 2: 5 weeks after sinoaortic denervation, the rats received intraperitoneal injections of 500 μg soluble RAGE (sRAGE) daily for 3 weeks. Treatment of SAD rats with sRAGE attenuated aortic remodeling, marked by reduction in AW/length, wall thickness, proliferation of SMC, and collagen deposition, and improvement of endothelial function. Treatment of SAD rats with sRAGE abated aortic oxidative stress, marked by reduction in formation of malondialdehyde, reactive oxygen species, superoxide, peroxynitrite and 3-nitrotyrosine, and enhancement of ratio of GSH/GSSG. Treatment of SAD rats with sRAGE attenuated aortic mitochondrial dysfunction. Treatment of SAD rats with sRAGE suppressed aortic NFκB nuclear translocation and inflammation. Treatment of SAD rats with sRAGE restored aortic NO formation through upregulating eNOS and dimethylarginine dimethylaminohydrolase-2 and downregulating protein arginine methyltransferase-1. ConclusionActivated RAGE contributed to aortic remodeling and endothelial dysfunction in SAD rats, possibly via induction of oxidative stress and inflammation, impairment of mitochondrial function, and reduction in NO bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.