Abstract

Dendritic cells (DCs) are highly specialized antigen-presenting cells that play a key role in the initiation and regulation of immune responses. The ability of DCs to process antigens and the outcome of their interaction with T cells are largely dependent on phenotype as well as maturation state of DCs. In this study, we generated DCs from rat bone marrow precursors. Bone marrow cells cultured in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4, and Flt-3 ligand (FL) produced immature DCs that expressed intermediate levels of major histocompatibility complex (MHC) class II, low levels of CD80 and CD86 molecules and displayed a high capacity of endocytosis. Bone marrow-derived DCs (BMDCs) matured in the presence of lipopolysaccharide (LPS) upregulated expression of MHC class II, CD80 and CD86, while their phagocytic capacity was dramatically reduced. Mature BMDCs stimulated vigorous proliferation of purified allogeneic CD4 + T cells in a primary mixed leukocyte reaction (MLR) and elicited a mixed cytokine profile in allogeneic CD4 + T cells: DCs activated CD4 + T cells to produce interferon (IFN)-γ, IL-4, and IL-10. Thus, rat BMDCs effectively internalize antigens and stimulate T cell proliferation but fail to induce an unidirectional polarization of T helper (T H) cells and in this respect differ from both human and mouse DCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.