Abstract
Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD(+)-dependent telomeric silencing. We now report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD(+)-dependent deacetylase, Sir2p. Consistent with the dependence on NAD(+) in Sir2p-regulated silencing, we found that inositol depletion induces the expression of BNA2, which is required for the de novo synthesis of NAD(+). Moreover, telomeric silencing is greatly reduced in bna2Δ and npt1Δ mutants, which are defective in de novo and salvage pathways for NAD(+) synthesis, respectively. Surprisingly, however, omitting nicotinic acid from the growth medium, which reduces cellular NAD(+) levels, leads to increased telomeric silencing in the absence of inositol and/or at high temperature. This increase in telomeric silencing in response to inositol starvation is correlated to chronological life span extension but is Sir2p-independent. We conclude that activation of the PKC-MAPK signaling by interruption of inositol sphingolipid synthesis leads to increased Sir2p-dependent silencing and is dependent upon the de novo and salvage pathways for NAD(+) synthesis but is not correlated with cellular NAD(+) levels.
Highlights
Inhibition of complex sphingolipid synthesis by inositol starvation activates the protein kinase C (PKC)-MAPK signaling pathway
We report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD؉-dependent deacetylase, Sir2p
It has long been known that inositol-containing sphingolipid synthesis is reduced during inositol starvation [13, 53,54,55]
Summary
Inhibition of complex sphingolipid synthesis by inositol starvation activates the PKC-MAPK signaling pathway. Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD؉-dependent telomeric silencing. We report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD؉-dependent deacetylase, Sir2p. Sphingolipid synthesis with aureobasidin A (AbA) strengthens Sir2p-dependent telomeric silencing in a fashion similar to the effects observed in cells growing in the absence of inositol and that this response is mediated by an active PKC pathway. We conclude that increased Sir2p-dependent telomeric silencing in the absence of inositol requires an active PKC signaling pathway and is dependent on the de novo and salvage pathways for NADϩ biosynthesis but is not correlated with absolute cellular NADϩ levels
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.