Abstract
The ability of agmatine, formed from L-arginine by the enzyme arginine decarboxylase (ADC), to modulate vasomotor function in rat aorta was investigated in the present study. Agmatine-mediated modulation of vasomotor tone was studied in organ chambers, protein expression quantified by Western blot analysis and cyclic guanosine 5'-monophosphate (cGMP) levels measured by radioimmunoassay. Agmatine (10(-10) to 10(-3) M) produced concentration-dependent relaxations (82+/-5%) in phenylephrine-contracted endothelium intact rat aorta. Relaxations to agmatine were diminished on denudation of endothelium and nitric oxide synthase (NOS) inhibition by L-Nomega-nitro arginine or soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (P<0.001) abolished agmatine-mediated relaxations, while relaxations were insensitive to inducible NOS inhibition by 1400W. Agmatine-treated aorta demonstrated increased protein expression of phosphorylated S473-Akt and phosphorylated S1177-endothelial nitric oxide synthase (eNOS), and elevated the levels of cyclic GMP (P<0.01). Agmatine-mediated potentiation of relaxations and elevation of cGMP levels was sensitive to phosphatidylinositol 3'-kinase inhibitor, wortmannin. Relaxations to agmatine were also affected by pre-treatment with tetraethylammonium (P<0.01) or apamin (P<0.05), and were not affected by charybdotoxin. Relaxations to agmatine were partially affected by pre-treatment of aortic rings with barium chloride (P<0.05), and glybenclamide (P<0.05). Results obtained suggest that agmatine activates protein kinase B/Akt to phosphorylate eNOS and elevate cyclic GMP levels to produce vasodilatation of aorta. Agmatine-mediated relaxations in rat aorta seems to be mediated mainly by endothelial NO-mediated activation of small conductance Ca2+-activated K+ channels, and partly by ATP-sensitive and inward rectifying K+ channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.