Abstract

Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea. Infection by necrotrophic B. cinerea released HMGB3 into the extracellular space (apoplast). Silencing HMGBs enhanced susceptibility to B. cinerea, while HMGB3 injection into apoplast restored resistance. Like its human counterpart, HMGB3 binds salicylic acid (SA), which results in inhibition of its DAMP activity. An SA-binding site mutant of HMGB3 retained its DAMP activity, which was no longer inhibited by SA, consistent with its reduced SA-binding activity. These results provide cross-kingdom evidence that HMGB proteins function as DAMPs and that SA is their conserved inhibitor.

Highlights

  • As multi-cellular organisms, plants must be able to detect wounding and tissue damage, which can breach the physical barriers to pathogen infection

  • We recently identified human High Mobility Group Box 1 (HMGB1) as a novel Salicylic Acid-Binding Protein (SABP) and found that its Damage-associated molecular patterns (DAMPs) activities are inhibited by salicylic acid (SA) binding

  • We showed that i) infection by a necrotrophic pathogen releases plant HMGB3 into the apoplast, ii) extracellular, HMGB3 activates immune responses, iii) SA binds to HMGB3, and iv) this binding alters its DAMP activity

Read more

Summary

Introduction

As multi-cellular organisms, plants must be able to detect wounding and tissue damage, which can breach the physical barriers to pathogen infection. Cell surface pattern-recognition receptor (PRR) complexes detect the presence of DAMPs, as well as microbe-associated molecular patterns (MAMPs), and activate a plant innate immune response termed pattern-triggered immunity (PTI) [1,3,4]. Plants lacking certain PRRs or their regulatory LRR RLKs BAK1 and BKK1 have severely compromised PTI responses. These plants fail to exhibit a rapid Ca2+ influx or an oxidative burst, and/or display reduced levels of mitogen-activated protein kinase (MAPK) activation, defense-related gene expression, and callose deposition; as a result, they exhibit decreased disease resistance

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.