Abstract

Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PMA-induced phosphorylation of the MAP kinase substrate and transcription factor Elk-1. Simultaneously, leishmania infection markedly attenuated the induction of c-FOS and inducible nitric oxide synthase (iNOS) expression in response to PMA and gamma interferon (IFN-gamma), respectively. These effects correlated with decreased phosphorylation of p44 and p42 MAP kinases on tyrosine residues. Consistent with the latter finding, lysates prepared from leishmania-infected cells contained an activity that dephosphorylated MAP kinase in vitro, suggesting the possibility of a phosphatase acting in vivo. Attenuation of both MAP kinase activity and c-FOS and iNOS expression was reversed by treatment of macrophages with sodium orthovanadate prior to infection. It was also found that the specific activity of the Src homology 2 domain containing tyrosine phosphatase (SHP-1) toward MAP kinase was markedly increased in leishmania-infected cells. These findings indicate that infection with L. donovani attenuates MAP kinase signaling and c-FOS and iNOS expression in macrophages by activating cellular phosphotyrosine phosphatases. This may represent a novel mechanism of macrophage deactivation during intracellular infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.