Abstract

Phosphatidic acid (PtdOH) has been shown not only to stimulate autophosphorylation and autoactivation of phosphorylase kinase of rabbit skeletal muscle but also to decrease the apparent Ka for Ca2+ on autophosphorylation sharply [Negami et al. (1985) Biochem. Biophys. Res. Commun. 131, 712-719]. In this study we investigated the interaction between PtdOH and other phospholipids on autophosphorylation and autoactivation of this enzyme. Acidic phospholipids, such as phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns) and PtdOH, stimulated this reaction about 2-4-fold, and the approximate Ka values of this reaction were 10 micrograms/ml, 6.3 micrograms/ml and 30 micrograms/ml respectively. The molar ratio of PtdIns and PtdSer with maximal effect on autophosphorylation was about 1:1. Under these conditions PtdOH stimulated the initial velocity of autophosphorylation about 5.2-fold. When fully autophosphorylated, about 12-13 mol phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of mixed acidic phospholipids (PtdOH:PtdIns:PtdSer = 2:1:1), which was about twice as much as values observed without effectors. In the presence of mixed acidic phospholipids there was a concomitant enhancement of kinase activity, about 30-40-fold at pH 6.8 and 2.5-3-fold at pH 8.2. Mixed acidic phospholipids sharply decreased an apparent Ka for Ca2+ from 4 X 10(-5) M to 8 X 10(-7) M. With mixed acidic phospholipids as effectors this autophosphorylation occurred through an intramolecular mechanism. Based on these results, autophosphorylation and autoactivation of phosphorylase kinase in the presence of acidic phospholipids may account for an important regulatory mechanism of glycogenolysis in muscle contraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.