Abstract

Our earlier studies demonstrated that high-density lipoproteins (HDLs) stimulate multiple signaling pathways, including activation of phosphatidylcholine-specific phospholipases C and D (PC-PLs) and phosphatidylinositol-specific phospholipase C (PI-PLC). However, only activation of PC-PLs was linked to the HDL-induced cholesterol efflux. In the study presented here, the role of HDL-induced PI-PLC activation was studied. In human skin fibroblasts, HDL potently induced PI-PLC as inferred from enhanced phosphatidylinositol bisphosphate (PtdInsP(2)) turnover and Ca(2+) mobilization. The major protein component of HDL, apo A-I, did not induce PtdInsP(2) turnover or Ca(2+) mobilization in these cells. Both HDL and apo A-I promoted cellular cholesterol efflux, whereas only HDL induced fibroblast proliferation. Inhibition of PI-PLC with U73122 or blocking intracellular Ca(2+) elevation with Ni(2+) or EGTA markedly reduced the extent of HDL-induced cell proliferation but had no effect on cholesterol efflux. In fibroblasts from patients with Tangier disease which are characterized by defective cholesterol efflux, neither HDL-induced PtdInsP(2) breakdown and Ca(2+) mobilization nor cell proliferation was impaired. HDL-induced fibroblast proliferation, PtdInsP(2) turnover, and Ca(2+) mobilization were fully mimicked by the lipid fraction isolated from HDL. Analysis of this fraction with high-performance liquid chromatography (HPLC) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) revealed that the PI-PLC-inducing activity is identical with two bioactive lysosphingolipids, namely, lysosulfatide (LSF) and sphingosylphosphorylcholine (SPC). Like native HDL, LSF and SPC induced PtdInsP(2) turnover, Ca(2+) mobilization, and fibroblast proliferation. However, both compounds did not promote cholesterol efflux. In conclusion, two agonist activities are carried by HDL. Apo A-I stimulates phosphatidylcholine breakdown and thereby facilitates cholesterol efflux, whereas LSF and SPC trigger PI-PLC activation and thereby stimulate cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.