Abstract

We have recently shown that β-adrenergic agonist, isoproterenol-induced parotid acinar cell proliferation is in part mediated by elevated levels of surface galactosyltransferase which undergoes interaction with the EGF-R. The receptor subsequently undergoes autophosphorylation on the tyrosine residues in a manner similar to its ‘receptor-ligand’ interaction (Purushotham et al. (1992) Biochem. J. 284, 767–776). In this study, we provide evidence for phosphatidylinositol 3-kinase and 4-kinase as cytoplasmic signalling proteins involved in both the isoproterenol and EGF-stimulated signal transduction upon in vitro and in-vivo stimulation of parotid acinar cells. Total cell lysate activity for the PtdIns 4-kinase was 2- and 3-fold higher than unstimulated control cells, while the PtdIns 3-kinase was 1.4- and 2.8-fold higher following stimulation by isoproterenol or EGF, respectively. Increases of 6- and 2-fold in phosphatidylinositol 3-kinase were observed in anti-phosphotyrosine-antibody-immunoprecipitated cell lysates upon in-vitro growth stimulation with isoproterenol or EGF, respectively. There was an increase in tyrosine phosphorylation of the holoenzyme and association of the p85 subunit of phosphatidylinositol 3-kinase with EGF-R in response to both isoproterenol and EGF treatments. This corresponded with the mobilization of p85 from the cytoplasm to the plasma membrane upon growth stimulation. These results further implicate the phosphoinositide metabolites in the second messenger signalling pathways of isoproterenol-induced rat parotid cell proliferation. The parallel utilization of EGF indicate that the post-transductional mechanisms of isoproterenol-induced acinar cell proliferation are similar to the growth-factor-mediated activation of intracellular signalling pathways for cell growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.