Abstract

Calcined Cu-based metal–organic frameworks impregnated with nickel nitrate catalysts (CuNi@C) were synthesised. X-Ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy techniques were applied for the characterisation of the synthesised catalyst, which revealed an octahedral particle shape, rough surface, and metallic copper (Cu, CuO) and nickel (Ni, NiO) particles. CuNi@C was fabricated as a novel peroxymonosulfate (PMS) activator for the oxidative degradation of Acid Orange 7 (AO7) in aqueous media. Results showed that the CuNi@C/PMS system can efficiently degrade nearly 100 % of 0.02 mmol L−1 AO7 within 60 min. In addition, the trapping experiments confirmed the participation of sulfate radicals (SO4•−) and hydroxyl radicals (HO•) as reactive species in the system. Furthermore, the effects of parameters including catalyst and PMS dosages, initial concentration of AO7, and pH were studied. Results showed that the decolourisation efficiency increased with the increase of catalyst dosage, but decreased with the increase of AO7 concentration. The optimal PMS concentration was 0.675 mmol L−1, and initial pH showed no significant effect on the degradation of AO7. Moreover, the CuNi@C could be reused four times with good activity and reusability. Findings revealed that the CuNi@C/PMS system shows potential for degrading contaminants in the environment, due to its catalytic activity and non-negligible adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.