Abstract

MicroRNAs (miRNAs) are thought to have an important role in tumor metastasis by regulating diverse cellular pathways. Here, we describe the function and regulation network of miR-206 in gastric cancer (GC) metastasis. MiR-206 expression was downregulated in GC cells especially in high metastatic potential cells and was also significantly decreased in metastatic lesions compared with their corresponding primary tumor samples. Both gain- and loss-of-function studies confirmed that miR-206 significantly suppressed GC cell invasion and metastasis both in vitro and in vivo. Mechanistically, paired box gene 3 (PAX3) was identified as a functional target of miR-206 in GC cells. MiR-206 inhibited GC metastasis by negatively regulating expression of PAX3. In addition, PAX3 expression was markedly higher in GC tissues than in adjacent non-cancerous tissues. GC patients with positive PAX3 expression had shorter overall survival times. Transwell assays and in vivo metastasis assays demonstrated that overexpression of PAX3 significantly promoted the invasiveness and pulmonary metastasis of GC cells. On the other hand, downregulation of PAX3 markedly reduced cell metastatic potential. Mechanistic investigations indicated that prometastasis function of PAX3 was mediated by upregulating downstream target MET. Moreover, we found that levels of PAX3 and MET were positively correlated in matched human GC specimens, and their coexpression was associated with poor prognoses. In conclusion, our results reveal that miR-206-PAX3-MET signaling is critical to GC metastasis. Targeting the pathway described here may open new therapeutic prospects to restrict the metastatic potential of GC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.