Abstract

Tumor suppressor p53 binds to the target in a genome and regulates the expression of downstream genes. p53 searches for the target by combining three-dimensional diffusion and one-dimensional sliding along the DNA. To examine the regulation mechanism of the target binding, we constructed the pseudo-wild type (pseudo-WT), activated (S392E), and inactive (R248Q) mutants of p53 and observed their target binding in long DNA using single-molecule fluorescence imaging. The pseudo-WT sliding along the DNA showed many pass events over the target and possessed target recognition probability (TRP) of 7±2%. The TRP increased to 18±2% for the activated mutant but decreased to 0% for the inactive mutant. Furthermore, the fraction of the target binding by the one-dimensional sliding among the total binding events increased from 63±9% for the pseudo-WT to 87±2% for the activated mutant. Control of TRP upon activation, as demonstrated here for p53, might be a general activation mechanism of transcription factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call