Abstract

We have explored intracellular pathways involved in the urokinase type plasminogen activator (urokinase or uPA)-stimulated migration of human airway smooth muscle cells (hAWSMC). Using a set of uPA mutants we found that protease activity, growth factor-like and kringle domains of uPA differentially contribute to activation of p42/p44erk1,2 and p38 MAP-kinases. Consistent with our earlier data [Mukhina et al., J. Biol. Chem. 275 (2000), 16450-16458], the kringle domain of uPA was sufficient and required to stimulate cell motility. Here we report that uPA mutants containing the kringle domain specifically activate the p38 MAP-kinase pathway and actomyosin by increasing phosphorylation of the critical Ser-19 on the myosin regulatory light chain and MAP-kinase sites of the actin-associated regulatory protein caldesmon. While pharmacological inhibition of p38 MAP-kinase activation did not affect myosin light chain phosphorylation, it blocked the increase in caldesmon phosphorylation and uPA-stimulated migration of hAWSMC on a collagen-coated surface. We conclude that activation of p38 MAP-kinase and downstream phosphorylation of non-muscle caldesmon is essential for urokinase-stimulated smooth muscle cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call