Abstract

This study reports that the combination of Cu(II) with hydroxylamine (HA) (referred to herein as Cu(II)/HA system) in situ generates H2O2 by reducing dissolved oxygen, subsequently producing reactive oxidants through the reaction of Cu(I) with H2O2. The external supply of H2O2 to the Cu(II)/HA system (i.e., the Cu(II)/H2O2/HA system) was found to further enhance the production of reactive oxidants. Both the Cu(II)/HA and Cu(II)/H2O2/HA systems effectively oxidized benzoate (BA) at pH between 4 and 8, yielding a hydroxylated product, p-hydroxybenzoate (pHBA). The addition of a radical scavenger, tert-butyl alcohol, inhibited the BA oxidation in both systems. However, electron paramagnetic resonance (EPR) spectroscopy analysis indicated that (•)OH was not produced under either acidic or neutral pH conditions, suggesting that the alternative oxidant, cupryl ion (Cu(III)), is likely a dominant oxidant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.