Abstract

BackgroundRadiation-induced lung injury (RILI) is a common side effect of thoracic tumor radiotherapy, including early-stage radiation-induced lung injury (RP) and late-stage radiation-induced pulmonary fibrosis (RIPF). Currently, it is urgently needed to clarify the pathogenesis of RILI and find safe and effective RILI treatment methods. Irradiation causes DNA damage and oxidative stress in tissues and cells, induces cellular senescence, and promotes the occurrence and development of RILI. In recent years, Anisodamine (654-2) has shown potential therapeutic value in acute lung injury, acute kidney injury, chlamydial pneumonia, and COVID-19. However, there is currently no research on the mechanism of 654-2-mediated cellular senescence and its preventive and therapeutic effects on RILI. PurposeThis study aimed to investigate the protective effect and mechanism of 654-2 on X-ray-induced RILI. MethodsIn vivo experiments involved a mouse RILI model with 18 Gy X-ray irradiation. Mice were divided into control, model, medication (control + 654-2), and treatment (model + 654-2) groups. And mice in medication and treatment groups were intraperitoneal injection of 5 mg/kg 654-2 every other day until being sacrificed at week 6. In vitro experiments used MLE-12 cells irradiated with 16 Gy and divided into control, model, and model + 654-2(2 μM and 10 μM) groups. Various assays were performed to evaluate lung tissue morphology, fibrosis, apoptosis, cytokine expression, cellular senescence, protein expression, and antioxidant capacity. Results654-2 mitigated pulmonary pathological damage, inflammation, DNA damage, cellular senescence, and apoptosis in RILI mice and MLE-12 cells. It restored epithelial cell proliferation ability and enhanced antioxidant capacity. Additionally, 654-2 activated the Nrf2/ARE pathway, increased Nrf2 phosphorylation, and upregulated antioxidant gene expression. Inhibition of Nrf2 reversed the effects of 654-2 on ROS production, antioxidant capacity, and cell senescence. Conclusion654-2 can activate the Nrf2/ARE pathway, enhance cellular antioxidant capacity, and inhibit cellular senescence, thereby exerting a protective effect against RILI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call