Abstract

A disintegrin and metalloproteinase 10 (ADAM10) is the constitutive α-secretase that governs the nonamyloidogenic pathway of β-amyloid precursor protein processing and is an attractive drug target for treating Alzheimer's disease. To date, little is known about the mechanism by which ADAM10 is regulated in neurons. Using mouse primary cortical neurons, we show here that NMDA receptor (NMDAR) activation led to upregulation of the genes encoding ADAM10 and β-catenin proteins. Interestingly, the ADAM10 upregulation was abolished by inhibitors of Wnt/β-catenin signaling. Conversely, activation of the Wnt/β-catenin signaling pathway by recombinant Wnt3a stimulated ADAM10 expression. We further showed that both the NMDAR- and Wnt3a-induced ADAM10 upregulation was blocked by ERK inhibitors. We suggest that the NMDARs control ADAM10 expression via a Wnt/MAPK signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.