Abstract

The process of cancer metastasis consists of multiple sequential and highly selective steps. The vast majority of tumor cells that enter the circulation die rapidly and only a few survive and proliferate to form distant metastases. This survival is not random. Metastases are clonal in origin and are produced by specialized subpopulations of cells that preexist in a heterogeneous primary tumor. Metastatic cells of the murine K-1735 melanoma survive in the circulation to produce experimental lung metastases, whereas nonmetastatic cells do not. After incubation with different cytokines or LPS, nonmetastatic cells exhibit a high level of inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production, whereas metastatic cells do not. To provide direct evidence for the inverse correlation between the production of endogenous NO and the ability of K-1735 cells to produce metastasis in syngeneic mice, highly metastatic clone 4 cells (C4.P), which express low levels of iNOS, were transfected with a functional iNOS (C4.L8), inactive mutated iNOS (C4.S2), or neomycin resistance (C4.Neo) genes in medium containing 3 mM NMA. C4.P, C4.Neo3, and C4.S2.3 cells were highly metastatic, whereas C4.L8.5 cells were not. Moreover, C4.L8.5 cells produced slow-growing subcutaneous tumors in nude mice, whereas the other three cell lines produced fast-growing tumors. In vitro studies indicated that the expression of iNOS in C4.L8.5 cells was associated with apoptosis. Multiple intravenous injections of liposomes containing a synthetic lipopeptide upregulated iNOS expression in murine M5076 reticulum sarcoma cells growing as hepatic metastases. The induction of iNOS was associated with the complete regression of the lesions. Collectively, these data demonstrate that the expression of iNOS in tumor cells is associated with apoptosis, suppression of tumorigenicity, abrogation of metastasis, and regression of established hepatic metastases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.