Abstract

Wear particles are believed to induce periprosthetic inflammation which contributes to periprosthetic osteolysis. TNFalpha plays a pivotal role in the pathogenesis of this process. The molecular mechanisms leading to the development of periprosthetic inflammation with upregulated TNFalpha expression in monocytic cells in response to different wear particles have yet to be defined. In this study we evaluated the effects of polyethylene- and TiAlV-particles on activation of NF-kappaB signalling pathways and TNFalpha biosynthesis and release in monocytic cells with respect to periprosthetic osteoclastogenesis. THP-1 monocytic cells were differentiated to macrophage-like cells and exposed to LPS-detoxified polyethylene and prosthesis-derived TiAlV-particles. TNFalpha release was analyzed in culture supernatant by ELISA. NF-kappaB activation was examined by electrophoretic mobility shift assay (EMSA), and NF-kappaB target promoter activities including transactivation of the TNFalpha promoter were determined by luciferase reporter gene assays. Differentiated THP-1 macrophages were exposed to increasing numbers of particles for 0, 60, 180 and 360 min. Both, polyethylene- and TiAlV-particles induced a significant activation of both NF-kappaB and TNFalpha promoters at 180 min. A significant TNFalpha release was detected after 360 min exposure to polyethylene- and TiAlV-particles in a dose dependent manner. In comparison, LPS induced a much greater activation of NF-kappaB and TNFalpha promoters, and TNFalpha secretion into the supernatant was strongly induced. These results provide evidence that induction of the NF-kappaB signal transduction pathway in macrophages plays a major role in initiating and mediating the inflammatory response leading to periprosthetic osteolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.