Abstract

Yersinia enterocolitica triggers activation of the nuclear factor (NF)-kappaB and production of the proinflammatory chemokine interleukin (IL)-8 in intestinal epithelial cells. This activation is due to adhesion of the bacteria via their outer membrane protein invasin to the host cells. Using Clostridium difficile toxins that specifically inactivate small GTPases, and transfection of inhibitory proteins of the Rho-GTPases, we demonstrate that Rac1, but not Cdc42 or Rho, is required for activation of NF-kappaB by invasin. Invasin activated the mitogen activated protein kinases (MAPK) p38 and c-Jun N-terminal protein kinase (JNK) but not extracellular signal regulated kinase (ERK). The functional relevance of these pathways for invasin-mediated IL-8 expression was assessed by protein kinase inhibitors and dominant-negative kinase mutants. While NF-kappaB and JNK contribute to IL-8 transcription, p38 MAPK also acts through stabilization of IL-8 mRNA, as confirmed by quantitative RT-PCR and electrophoretic mobility shift assays. Transfection experiments with I-kappaB kinase (IKK)1 and IKK2 mutants indicate that the release of NF-kappaB from its cytoplasmic inhibitor I-kappaB and its translocation into the nucleus is mediated by these kinases. Our data identify Rac1 as a key intermediate in invasin-triggered IL-8 synthesis and demonstrate that maximum IL-8 induction involves several MAP kinase cascades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.