Abstract
The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.