Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing and remitting conditions associated with long-term gut dysfunction resulting from alterations to the enteric nervous system and a loss of enteric neurons1,2. The mechanisms underlying inflammation-induced enteric neuron death are unknown. Here we report using in vivo models of experimental colitis that inflammation causes enteric neuron death by activating a neuronal signaling complex comprised of P2X7 receptors (P2X7Rs), pannexin–1 (Panx1) channels, Asc and caspases. Inhibiting P2X7Rs, Panx1, Asc or caspase activity prevents inflammation-induced neuron cell death. Preservation of enteric neurons by inhibiting Panx1 in vivo prevented the onset of inflammation-induced colonic motor dysfunction. Panx1 expression is reduced in Crohn’s disease but not ulcerative colitis. We conclude that activation of neuronal Panx1 underlies neuron death and subsequent development of the abnormal gut motility in IBD. Targeting Panx1 represents a novel neuroprotective strategy to ameliorate the progression of IBD–associated dysmotility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.