Abstract

In mammals that develop rectal aganglionosis, the aganglionic segment still exhibits spontaneous phasic contractions that contribute to dysmotility and pseudoobstruction in this region. However, almost nothing is known about the mechanisms that generate these myogenic contractions or the effects of aganglionosis on the generation of Ca(2+) waves that underlie contractions of the longitudinal muscle (LM) and circular muscle (CM). In a mouse model of Hirschsprung's disease [endothelin type B receptor-deficient (Ednrb(s-l)/Ednrb(s-l)) mice], the Ca(2+) indicator fluo-4 was used to simultaneously monitor the temporal activation and spread of intercellular Ca(2+) waves in the LM and CM during spontaneous colonic motor activities. During the intervals between colonic migrating motor complexes (CMMCs) in control mice, Ca(2+) waves discharged asynchronously between the LM and CM. However, in these same mice, during CMMCs, a burst of discreet Ca(2+) waves fired simultaneously in both muscle layers, where the propagation velocity of Ca(2+) waves significantly increased, as did the rate of initiation and number of collisions between Ca(2+) waves. Hexamethonium (300 microM) or atropine (1 microM) prevented synchronized firing of Ca(2+) waves. In the aganglionic distal colon of Ednrb(s-l)/Ednrb(s-l) mice, not only were CMMCs absent, but Ca(2+) waves between the two muscle layers fired asynchronously, despite increased propagation velocity. The generation of CMMCs in control mice involves synchronized firing of enteric motor nerves to both the LM and CM, explaining the synchronized firing of discreet Ca(2+) waves between the two muscle layers. Aganglionosis results in a sporadic and sustained asynchrony in Ca(2+) wave firing between the LM and CM and an absence of CMMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.