Abstract

It is currently believed that a nonselective cation (NSC) channel, which responds to arginine vasotocin (an antidiuretic hormone) and stretch, regulates Na+ absorption in the distal nephron. However, the mechanisms of regulation of this channel remain incompletely characterized. To study the mechanisms of regulation of this channel, we used renal epithelial cells (A6) cultured on permeable supports. The apical membrane of confluent monolayers of A6 cells expressed a 29-pS channel, which was activated by stretch or by 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterase. This channel had an identical selectivity for Na+, K+, Li+, and Cs+, but little selectivity for Ca2+ (PCa/PNa < 0.005) or Cl- (PCl/PNa < 0.01), identifying it as an NSC channel. Stretch had no additional effects on the open probability (Po) of the IBMX-activated channel. This channel had one open ("O") and two closed (short "CS" and long "CL") states under basal, stretch-, or IBMX-stimulated conditions. Both stretch and IBMX increased the Po of the channel without any detectable changes in the mean open or closed times. These observations led us to the conclusion that a kinetic model "CL <--> CS <--> O" was the most suitable among three possible linear models. According to this model, IBMX or stretch would decrease the leaving rate of the channel for CL from CS, resulting in an increase in Po. Cytochalasin D pretreatment abolished the response to stretch or IBMX without altering the basal activity. H89 (an inhibitor of cAMP-dependent protein kinase) completely abolished the response to both stretch and IBMX, but, unlike cytochalasin D, also diminished the basal activity. We conclude that: (a) the functional properties of the cAMP-activated NSC channel are similar to those of the stretch-activated one, (b) the actin cytoskeleton plays a crucial role in the activation of the NSC channel induced by stretch and cAMP, and (c) the basal activity of the NSC channel is maintained by PKA-dependent phosphorylation but is not dependent on actin microfilaments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call