Abstract

Accessory lobes are protrusions located at the lateral sides of the spinal cord of chicks and it has been proposed that they play a role as a sensory organ for equilibrium during walking. We have reported that functional neurons exist in the accessory lobe. As there is histological evidence that synaptic terminals of cholinergic nerves exist near the somata of accessory lobe neurons, we examined the effects of acetylcholine on changes in intracellular Ca2+ concentrations ([Ca2+]i), as an index of cellular activities. Acetylcholine (0.1-100 µM) caused a transient rise in the [Ca2+]i. Acetylcholine-evoked [Ca2+]i rises were observed in the absence of extracellular Ca2+, and they were abolished in the presence of cyclopiazonic acid, an inhibitor of Ca2+-ATPase of intracellular Ca2+ stores or atropine, a muscarinic receptor antagonist. mRNAs coding M3 and M5 isoforms of the muscarinic receptors were detected in accessory lobes by the RT-PCR. These results indicate that chick accessory lobe neurons express functional muscarinic acetylcholine receptors, and that acetylcholine stimulates Ca2+ mobilization from intracellular Ca2+ stores, which elevates the [Ca2+]i in the somata of accessory lobe neurons, through activation of these receptors. Cholinergic synaptic transmission to the accessory lobe neurons may regulate some cellular functions through muscarinic receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.