Abstract
In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling − three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin. The venom had a stronger effect on chloroquine-sensitive C-fibers compared to chloroquine-insensitive C-fibers, an effect that was recapitulated with a wasp (Vespula spp.) venom. Blocking TRPV1 and TRPA1 channels did not influence the honeybee venom-induced C-fiber activation. The effect of the venoms on chloroquine-sensitive and −insensitive subpopulation of C-fiber terminals was mimicked by melittin but not apamin; two of peptide venom components. Chloroquine-sensitive C-fibers are stimulated as a consequence of mast cell activation. Melittin degranulated mast cells in mouse skin by a non-IgE and non-MrgprB2 mechanism, and this may explain the stronger activation of the chloroquine-sensitive C-fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.