Abstract

As(III) oxidation to As(V) is deemed necessary for better arsenic removal, and separation is still the optimal approach for water remediation from As(III). Herein, sulfite (SIV) was adopted to activate MnFe2O4 for simultaneous oxidation and adsorption of As(III) in neutral water. The As(III) removal was more efficient than a peroxidation of As(III) followed by adsorption. The adsorption capacity of MnFe2O4/S(IV) for As(III) (26.257 mg g−1) was much higher than those of MnFe2O4 alone for As(III) (9.491 mg g−1) and As(V) (9.142 mg g−1). The mechanistic study corroborated that intermediate Mn(III) was the dominant oxidant responsible for rapid oxidation of As(III), and the dual roles of S(IV) as a complexing ligand and a precursor of oxysulfur radicals accelerated the redox cycle of Mn(II)/Mn(III). Moreover, S(IV) enhanced arsenic adsorption by driving more production of monodentate complexes. As(III) can be effectively removed over a wide range of temperatures (283.15–313.15 K) and pH (3–10) with the optimal pH of 7. The effect of coexisting ions and reusability of MnFe2O4 were also investigated. Especially, the superior performance of MnFe2O4/S(IV) for As(III) removal in various water matrixes may help develop new removal technologies based on active Mn(III) for the water decontamination from As(III).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.