Abstract

Hierarchical porous carbon is often used in Li–S batteries due to the widely perceived benefits regarding the wide range of pore sizes. However, such notions are based solely on demonstrations of improved cyclic performances, and specific evidence to prove the utilization of the pores is yet to be found. Herein, we report, for the first time, the evidence for gradual activation of micropore-confined sulfur within porous carbon structures. By systematic comparison of microporous and hierarchical porous structures, we show that at sufficiently low current, sulfur infused hierarchical porous structures display a slowly activated and reversible reaction at 1.75 V vs Li/Li+ during discharge. This is in addition to the conventionally reported two voltage plateau at 2.3 and 2.1 V. Furthermore, the effects of LiNO3 decomposition on the system and the electrochemical mechanism behind the activation process is elucidated. Overall, the findings supplement the currently known electrochemical mechanisms occurring within porous structures and pave the way for more efficient utilization of hierarchical porous structures for applications in Li–S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.