Abstract

We consider quantum metrology with several copies of bipartite and multipartite quantum states. We characterize the metrological usefulness by determining how much the state outperforms separable states. We identify a large class of entangled states that become maximally useful for metrology in the limit of large number of copies, even if the state is weakly entangled and not even more useful than separable states. This way we activate metrologically useful genuine multipartite entanglement. Remarkably, not only that the maximally achievable metrological usefulness is attained exponentially fast in the number of copies, but it can be achieved by the measurement of few simple correlation observables. We also make general statements about the usefulness of a single copy of pure entangled states. We surprisingly find that the multiqubit states presented in Hyllus et al (2010 Phys. Rev. A 82 012337), which are not useful, become useful if we embed the qubits locally in qutrits. We discuss the relation of our scheme to error correction, and its possible use for quantum metrology in a noisy environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.