Abstract
We previously reported (Staak, S., Behnisch, T. and Angenstein, F., Hippocampal long-term potentiation: transient increase but no persistent translocation of protein kinase C (PKC) isoenzymes α and β, Brain Res., 682 (1995) 55–62) that Ca 2+-dependent PKC isoenzymes α/β and γ are not translocated between subcellular compartments after stimulation of glutamate receptor subtypes in hippocampal slices. Extending our previous work in this study in situ phosphorylation of endogenous PKC substrates and the translocation of novel PKC isoenzymes δ and ϵ was analysed to detect PKC activation. Two proteins of approximately 94 kDa and 18 kDa were first characterised to be specific PKC substrates. As control of the technique carbachol was shown to increase in situ phosphorylation of the two substrates without any measurable translocation of PKC protein. Activation of metabotropic glutamate receptors by 50 μM DHPG also increased the in situ-phosphorylation by 43.9% (94 kDa) and 32.8% (18 kDa) compared to controls but did not induce a measurable subcellular redistribution of conventional and novel PKC isoenzymes. Stimulation by 50 μM trans-ACPD or 0.1 mM quisqualate enhanced the in situ phosphorylation in the same range, whereas 0.1 mM NMDA was ineffective. To our knowledge this is the first report showing a direct link between metabotropic glutamate receptor activation and increased endogenous PKC substrate phosphorylation in adult hippocampal slices. This PKC activation was not detectable by a redistribution of enzyme protein between subcellular compartments. We, therefore, conclude, that the failure to detect PKC translocation in physiological experiments is not an indicator for unchanged enzyme activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.